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• Peridynamics background 

• States, horizon 

• Rescaling a material model (at a point) 

• Variable length scale (over a region) 

• Partial stress 

• Local-nonlocal coupling examples 
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Peridynamics basics: 
The nature of internal forces 

𝜌𝑢 𝑥, 𝑡 = 𝛻 ∙ 𝜎 𝑥, 𝑡 + 𝑏 𝑥, 𝑡  𝜌𝑢 𝑥, 𝑡 =  𝑓 𝑞, 𝑥 𝑑𝑉𝑞
𝐻𝑥

+ 𝑏 𝑥, 𝑡  

Standard theory 
Stress tensor field 

(assumes contact forces and  
smooth deformation) 

Peridynamics 
Bond forces within small neighborhoods 

 (allow discontinuity) 

𝜎𝑛 

𝑛 

Internal surface 

Summation over bond forces 

Differentiation of contact forces 

𝑓 𝑞, 𝑥  𝑥 

𝑞 

Body 

𝐻𝑥 = Family of 𝑥 

Horizon 𝛿 

Bond 

𝑥 



4 

Peridynamics basics: 
Deformation state and force state 

• The deformation state maps each bond to its deformed image. 

𝑌 𝑥 𝑞 − 𝑥 = 𝑦 𝑞 − 𝑦 𝑥   

• The force state maps bonds to bond forces according to the constitutive model. 

𝑓 𝑞, 𝑥 = 𝑇 𝑥 𝑞 − 𝑥 − 𝑇 𝑞 𝑥 − 𝑞  

• The constitutive model maps deformation states to force states. 

𝑇 𝑥 = 𝑇 𝑌 𝑥                     𝑇 𝑞 = 𝑇 𝑌 𝑞  

𝑥 𝑞 

𝑦(𝑞) 

𝑌 𝑥 𝑞 − 𝑥  
𝑦(𝑥) 



Scaling of a material model  
at a point 
 Let 𝜖 and 𝛿 be two horizons. Denote by 𝜉𝜖 and 𝜉𝛿  bonds within each family. 

 Suppose we have a material model with horizon 𝜖. Find a rescaled model with 𝛿. 

 Map the bonds (undeformed and deformed): 
𝜉𝜖
𝜖
=
𝜉𝛿
𝛿
  ,                  

𝑌𝜖 𝜉𝜖
𝜖

=
𝑌𝛿 𝜉𝛿
𝛿

 

 Require 
𝑊𝜖 𝑌𝜖 = 𝑊𝛿 𝑌𝛿  

 It follows from definition of Frechet derivative that the force state scales according 
to 

𝜖𝑑+1𝑇𝜖 𝑌𝜖 𝜉𝜖 = 𝛿𝑑+1𝑇𝛿 𝑌𝛿 𝜉𝛿  

 

5 

𝜉𝜖 
𝑌𝜖 

Material with horizon 𝜖 

𝜉𝛿 

𝑌𝛿 

Material with horizon 𝛿 

Same strain energy 
density 



Rescaling works fine if the horizon is 
independent of position 
 Example: uniform strain in a 1D homogeneous bar (𝑑 = 1, 𝐹 = constant): 

𝑦 = 𝐹𝑥 

 If we scale the material model as derived above: 
𝜖2𝑇𝜖 𝐹 𝜉𝜖 = 𝛿2𝑇𝛿 𝐹 𝜉𝛿  

we are assured that the strain energy density and Young’s modulus are independent 
of horizon. 

 Also the peridynamic equilibrium equation is satisfied. 
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𝜖 material 

𝛿 material 

𝑎 𝑏 
𝑥 

𝑢 

Solution 𝑢 𝑥  

𝑢𝑏 

𝑢𝑎 



Variable horizon: the problem 
 Same example: uniform strain in a 1D homogeneous bar 

𝑦 = 𝐹𝑥 

 Set 𝜖 = 1 , define 𝑍 𝐹 = 𝑇1 𝐹 . 

 Let the horizon be given by 𝛿 𝑥 . The scaled force state is 

𝑇 𝑥 𝜉 = 𝛿−2 𝑥 𝑍
𝜉

𝛿 𝑥
 

 From the previous discussion, we know 𝑊 is independent of 𝑥. 

 There’s just one problem: this deformation isn’t a minimizer of energy. 

 That is, the uniform strain deformation is not in equilibrium. 
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𝑎 𝑏 
𝑥 

𝑢 

Solution 𝑢 𝑥  

Prescribed horizon δ 𝑥  

𝑢𝑏 

𝑢𝑎 

𝛿 𝑥  material 



Origin of artifacts 

 The peridynamic force density operator 𝐿(𝑥) involves the force state not only at 𝑥 
but also the force states at all points within the horizon. 

0 = 𝐿 𝑥 + 𝑏,           𝐿 𝑥 =  𝑇𝛿 𝑥 𝑥 𝑞 − 𝑥 − 𝑇𝛿 𝑞 𝑞 𝑥 − 𝑞 𝑑𝑞
∞

−∞

 

so simply scaling the material model at 𝑥 is not sufficient. 
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𝑥 𝑞 

𝛿 𝑞  𝛿 𝑥  

Variable horizon 



“Patch test” requirement for a 
coupling method 
 In a deformation of the form 

𝑦 𝑥 = 𝑎 + 𝐹𝑥 
where 𝐻 is a constant and the material model is of the form  
 

𝑇 𝑥 𝜉 = 𝛿−2 𝑥 𝑍 𝜉 𝛿 𝑥  
 
where 𝛿 𝑥  is a prescribed function and 𝑍 is a state that depends only on 𝐹, we require 
 

𝐿 𝑥 = 0   for all 𝑥. 
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𝑎 𝑏 
𝑥 

𝑢 

Solution 𝑢 𝑥  

Prescribed horizon δ 𝑥  

𝑢𝑏 

𝑢𝑎 



Peridynamic stress tensor 
 Define the 1D peridynamic stress tensor field* by 

𝜐 𝑥 =   𝑇 𝑥 − 𝑦 𝑦 + 𝑤 − 𝑇 𝑥 + 𝑦 −𝑦 − 𝑤  𝑑𝑦 𝑑𝑧
∞

0

∞

0

 

 Identity: 

𝑑𝜐

𝑑𝑥
=  𝑇 𝑥 𝑞 − 𝑥 − 𝑇 𝑞 𝑥 − 𝑞 𝑑𝑞

∞

−∞

 

 𝜐 𝑥  is the force per unit area carried by all the bonds that cross 𝑥. 
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𝑥 

𝑤 𝑦 

𝑇 𝑥 − 𝑦 𝑦 + 𝑤  

*R. B. Lehoucq & SS, “Force flux and the peridynamic stress tensor,” JMPS (2008)  



Partial stress field 

 Under our assumption that 

𝑇 𝑥 𝜉 = 𝛿−2 𝑥 𝑍 𝜉 𝛿 𝑥  

one computes directly that 

𝜐0 𝑥 :=  𝜉𝑇 𝑥 𝜉  𝑑𝜉
∞

−∞

=  𝜉𝑍 𝜉  𝑑𝜉
∞

−∞

 

which is independent of 𝑥, so 𝑑𝜐0 𝑑𝑥 = 0 .  

 𝜐0 is called the partial stress field. 

 Clearly the internal force density field computed from 

𝐿0 𝑥 ≔ 𝑑𝜐0 𝑑𝑥  

 passes the “patch test.” 

 This observation leads to the following idea… 
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Concept for coupling method 

 Idea: within a coupling region in which 𝛿 is changing, compute the internal  force 

density from 

𝐿 𝑥 =
𝑑𝜐0

𝑑𝑥
𝑥  ,                     𝜐0 𝑥 :=  𝜉𝑇 𝑥 𝜉  𝑑𝜉

∞

−∞
 

instead of the full PD nonlocal integral. 

 Here, 𝑇 𝑥 𝑥  is determined from whatever the deformation happens to be near 𝑥. 

 𝑍 is no longer involved. 

 The material model has not changed from full PD, but the way of computing 𝐿 

has. 
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Local-nonlocal coupling idea 
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Position 𝑥 

Local region 

H
o

ri
zo

n
 𝛿

𝑥
 

𝐿 𝑥 =
𝑑𝜐0
𝑑𝑥

 

𝜐0 𝑥 = 𝜎 𝐹 𝑥  

Transition region 

𝐿 𝑥 =
𝑑𝜐0
𝑑𝑥

 

𝜐0 𝑥 =  𝜉𝑇 𝑥 𝜉  𝑑𝜉 

Nonlocal region 

𝐿 𝑥 =  𝑇 𝑥 𝜉 − 𝑇 𝑥 + 𝜉 −𝜉  𝑑𝜉 

Good old-fashioned 
local stress 

Partial stress 
(PS) 

Full peridynamic (PD) 



Continuum patch test results 
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• Full PD shows artifacts, as expected. 
• PS shows no artifacts, as promised. 

𝑢 = 0 

Horizon Strain 

𝑥 𝑥 

𝑢 = 0.02 

Full PD 

PS everywhere 



Continuum patch test with coupling 
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• No artifacts with PD-PS coupling (this was hoped for but not guaranteed). 

𝑢 = 0 𝑢 = 0.02 

𝑥 

Horizon 

𝑥 

PS PS PD 

Strain 



Pulse propagation test problem 
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Free boundary 

Force 𝑏 

𝑡 

H
o

ri
zo

n
 

𝑥 

PS PD 

𝛿 = 1 (nonlocal) 

𝛿 = 0.01 (in effect local) 

Local-nonlocal transition 
region has width 1 

• Does our coupling method work for dynamics as well as statics with variable horizon? 

Nonlocal Local 



Pulse propagation test results 
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Local Nonlocal Local Nonlocal 

• Movies of strain field evolution 

Full PD everywhere Coupled PD-PS 

Nonlocal Local 



Pulse propagation test results 
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Local Nonlocal Local Nonlocal 

• Strain field: no artifacts appear in the coupled model the local-nonlocal transition. 

Full PD everywhere Coupled PD-PS 

Artifact 

Nonlocal Local 



Discussion 
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• The partial stress approach may provide a means for local-nonlocal coupling 
within the continuum equations. 

• Uses the underlying peridynamic material model but modifies the way 
internal force density is computed. 

• Expected to work in 2D & 3D, linear & nonlinear. 
• PS is inconsistent from an energy minimization point of view. 

• Not suitable for a full-blown theory of mechanics and thermodynamics  
(as full PD is). 

• Not yet clear what implications this may have in practice. 
• We still need to use full PD for crack progression.  



Extra slides 
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Purpose of peridynamics 
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• To unify the mechanics of continuous and discontinuous media within a single, consistent 
set of equations. 

 

Continuous body Continuous body  
with a defect 

Discrete particles 

• Why do this? Develop a mathematical framework that help in modeling… 

• Discrete-to-continuum coupling 

• Cracking, including complex fracture patterns 

• Communication across length scales. 
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Peridynamic vs. local equations 

Kinematics 

Constitutive model 

Linear momentum  

balance 

Angular momentum  

balance 

Peridynamic theory Standard theory Relation 

Elasticity 

First law 


